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. ABSTRACT
' ‘a matrix-multiplicatior algorithm on a linear array using
an optimal number of processing elements is proposed. The
3 local storage required by the processing elements and the T/A0 |
bandwidth required to drive the array are both constants that
are independent of the sizes of the matrices being multiplied.
The algorithm is therefore modular, that is, arbitrarily large
matrices can be multiplied on a large array built by cascad-
. ing small arrays. The array is well-suited for VLSI implemen-
- tation. -
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1. Introduction
[ Specialized array processors have been proposed as a means of handling compute-
.: bound problems in a cost-effective and efficient manner [4,5,8]. These array processors
é are typically made up of simple, identical processing elements (which we will refer to as
. cells from now on) that operate in synchrony. Several array structures have been pro-
:‘E posed that include linear arrays, rectangular arrays and hexagonal arrays. Simplicity
and regularity of linear, rectangular and hexagonal array processors render them suit-
,; able for VLSI implementation. High performance is achieved by extensive use of pipelin-
2 ing and multiprocessing. In a typical application, such arrays would be attached as peri-
:' pheral devices to a host computer which inserts input values into them and extracts out-
: put values from them.
2
. In practice, linear arrays are more attractive than rectangular or hexagonal arrays
X for several reasons. Among them are the following: Linear arrays have bounded 1/O
~ requirements [6]. In a wafer containing fauity cells, a large percentage of non-faulty cells
: can be efficiently reconfigured into a linear array with constant wire length between
adjacent cells in the linear array (7). Synchronization between cells in a linear array can
3 be achieved by a simple global clock whose rate is independent of the size of the array
2.
o Linear-array algorithms for dense matrix multiplication have appeared in [1,3,8].
S These algorithms require O(n)' cells and O(n®) time steps to multiply two nXn
' matrices. However, these algorithms require that each cell in the linear array must have
.:j O(n) words of local storage. Hence, the maximum storage in the cells imposes an upper
h [imst on the size of the inatrices that can be multiplied. Consequently, these matrix mul-
i tiplication algorithms are not modularly expandable, that is, matrices larger than nXn
t4

1n) == O(n)if there exists a positive constant c for which An) < en

.......




. ML A A T T T T R G TR L P T T P S S

NV Ar 't B B ar aet drn o s oy ot 2o £ AACAC A SR/ AR AARE DAL UL R A A N A

N
s a

.

'I

AN - 3L
*»

)

cannot be multiplied by cascading several such linear arrays into one large array. To do

this, the local storage in each of the cells would have to be increased.

In this paper we present a novel linear-array algorithm for multiplying two nXn
dense matrices wherein the local storage required by each cell in the linear array is a
constant that is independent of the sizes of the matrices being multiplied.Therefore the
algorithm is modular, that is, arbitrarily large matrices can be multiplied by extending
the linear array. The algorithm requires O(n®) cells and the multiplication is done in
O(n°) steps. We will also show that O(n’) cells used by the algorithm is asymptotically
optimal. The time required to perform the multiplication (O(n?)) is also asymptotically
optimal as at least n’ time steps are required to insert the elements into and retreive the

results from the array through a constant number of I/O ports.

The rest of this paper is organized as follows. In Section 2, we describe the cell and
the linear array model that we will be using to describe the algorithm. In Section 3, we
present the algorithm to multiply two nX n matrices and illustrate it by an example. In
Section 4, a proof of the algorithm is provided and in Section 5 we show that O(n?) cells

used by the algorithm is optimal.

2. Cell and Linear Array Model

We begin with a description of the ceil model. Each cell ( see Figure 2.1 ) is capa-
ble of performing a matrix multiplication step (i.e., a multiplication and an addition) in

%

every clock cycle. ) ﬂ
-
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Figure 2-1

1® and 1V are the two control input ports and O® and OV are the corresponding
control output ports. In every cycle, the control signal at I¥ is tranemitted unchanged
to OV and the control signal at 1 is transmitted to OP through a buffer BUF, that

deiays it by ome cycle. At every clock cycle, & has one of the following three control

signals: ¢,, &, and ‘‘don’t-care”. (A two-bit wide 19 is therefore adequate.) Similarly,

at every clock cycle, I¥ has one of the following three control signals: ¥,, ¥, and
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“‘don’t-care’’.

IA, IB and IC are the input data ports for the elements of tke matrices A, B and C
respectively where C==A XB. The input data value at port A is accompanied by a tag
bit. We will denote the input data value at port IA as active if the tag bit is ‘““on", else
we will refer to it as being snactive. In every clock cycle the DEC unit ( read as ‘‘decod-
ing unit’’ ) strips the tag from the input value at IA. T denotes the tag bit and D the

data.

The ‘‘dashed’ lines are the control signals from the control unit to the adder, mul-
tiplier and the MOD unit (read as ‘‘modifying unit” ). In every clock cycle, the MOD
unit modifies the tag bit of the input value at IA depending on the control signal from
the control unit. The modified tag bit from MOD is appended to the data at D in the

ENC unit (read as “‘encoding unit” ).

BUF, and BUF, are two buffers whose sole purpose is to delay the input data at

IB and the input control signal at I respectively by one cycle.

We now describe the program executed by the cell in every cycle. At the begin-
ning of a cycle, let @, b, ¢ denote the data at ports IA, IB and IC respectively. Let te
denote the tag bit accompanying a. Let ¢, and c, be the two input control signals at (9

and IV respectively. The cell executes the following steps sequentially.

insert contents of BUF, and BUF, into output ports OB and O® respectively;
ifc, =, and c, = V¥,
then begin
set tg to ‘‘on” (i.e., activate a );
go to exitl;
end;
if ¢; = ¢, and ¢; = V¥,
then begin
set tg to “off”’ (i.e., deactivate o )
go to exitl;

O T e e T AT Tt A TN 4 e at
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end;

if @ is inactive then go to exitl;
if a is active then go to exit2;
exitl: insert ¢ in output port OC;

go to exit;
exit2: insert c¢+ab in output port OC;
exit: insert output of ENC in output port OA;

insert b into BUF,; insert ¢, and c, into BUF, and OV respectively.

In every cycle, a cell either activates the data at IA, or deactivates the data at 1A
or computes a matrix multiplication step provided the data at IA is active. The cell

does not modify the tag bit when the control signals are “don’t-care” control signals.

The linear array is comprised of cells indexed from 1 to m where m depends on the

size of the matrices being multiplied. Figure 2.2 illustrates the linear array.
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Figure 2.2

For any cell i in the linear array, its output ports O9, OA and OB are connected to
the input ports 19, IA and IB respectively of cell i+1. Also, its output ports O¥ and

OC are connected to the input ports I¥ and IC respectively of cell i-1.
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External control signals are inserted at ¢ and [¥ of cell 1 and cell m respectively.

The entries of matrix A are inserted at IA of cell 1. The tags accompanying each of these
entries are set to ‘‘off’” (i.e., the entries of matrix A are inactive when they enter the
array). The entries of matrix B are inserted at IB of cell 1 and those of matrix C are

inserted at IC of cell m.

3. Modular Matrix Multiplication Algorithm

We introduce the following notation to describe the algorithm. Let a; b;; ¢;
denote the ij** entry in matrices A, B and C respectively. Elements a; and 3, in matrix
A are said to be in the same disgonal if i+j=p+q. The k'® diagonal denotes the diagonal
containing a;; where i+j-1=k.

The entries of matrix A are inserted in the following order: entries in the 1* diago-
nal, followed by entries in the ad diagonal, .., followed by entries in the (2n-1)" diago-
nal. Within any diagonal, the entries are inserted in increasing order of their column
indices.

The entries of matrices B and C are inserted in the following order: entries in row
1, entries in row 2, .., entries in row n. Within any row of matrix B the entries are
inserted in decreasing order of their column indices. Within any row of matrix C the

entries are inserted in increasing order of their column indices.

Recall that control signals pass through a cell without any change. A control signal
at [$ of a cell is transmitted unchanged to O of the same cell at the end of two cycles
and a control signal at I¥ of a cell is transmitted unchanged to OV¥ at the end of one
cycle. At each clock cycle a new control signal (either ®; &,, or “‘don’t-care”) is inserted

at 19 of cell 1. In the sequence of control signals inserted at I®, let &/ ( &/ ) denote the

i** &, ( ¢, ) signal (we assume that the indexing begins from 1 ). Similarly, in the
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sequence of control signals inserted at I¥, let ¥/ ( ¥} ) depote the it® ¥, (¥, ) signal.

-~
I Kodeodm® ot a

The number m of cells required by the alzorithm is dependent on whether n is

N . n-1

- odd or even. Define r as follows: If n is odd, let = be 5 and if n is even let r be % ( we 1

) assume n>2 ). Let t, denote the time at which V! is inserted in the array. J
-
' Algorithm ( for odd n )

The number m of cells required by the algorithm for odd n is (n-1)(r+1)+0%+2

': and the algorithm is comprised of the following steps.
i_j 1. Insert a;; into 1A of cell 1 at time to+2+{n-1)(n-r)+n(i+j-2)+(j-1);

; 2. Insert b into IB of cell 1 at time to+1+3(r+1)i-1)j-1);
;:-E 3. Insert 0 into IC of cell m at time t,+2+3n(i-1)+2(i-1);
.. 4. Insert &} into I® of cell 1 at time ty+2+3(r+1){j-1);

>
1 5. Insert &/ into I® of cell 1 at time ty~(n-1)+3(z-+1)j-1);

2 8. Insert ¥/ into I¥ of cell m at time y+3n(i-1); '
'fg 7. Insert ¥} into I¥ of cell m at time t,+2n+2+3n(i-1); .
-,. 8. For all cycles between ty-{n-1Xr+1)-n’-1 and t,+50°-2n+1 do the following: :
_‘ a. if no entry of matrix A is being inserted into IA of cell 1 then insert 0;

j b. if no valid control signals are being inserted into I® and IV of cell 1 and cell m

j respectively then insert ‘““don’t-care” control signals.

z The number of cells required by the algorithm for even n is 3n(r+1). The algo-

3 rithm is similar to the algorithm for odd n except steps 1 and 8. For even n, a; is

i inserted at time to+1+(n-r){n-1)+(i+j-2 n-1)+(j-1) in step 1 and step 8 is carried out

N

between cycles to-3a(r+1)-1 and ty+1+(n-1)(3n+r+35).
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e Example: We illustrate the algorithm by multiplying two 3 X3 matrices. n=3 and so

the number cf cells required is 15, that is, m=15. Let t,=14.

o

X,
)

Tables 1, 2 and 3 show the times at which the elements in matrices A, B and C

l'l
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respectively are inserted into the array.
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1 2 3 1 2 3 1 2 3

120 |24 |28
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In Tables 1, 2 and 3 the entry in the i® row and j** column is the time at which

0

the (ij)"® element in matrices A, B and C respectively is inserted into the array.

- P
. -"-"n

Entries in Table 4 below indicate the times at which the control signals are

ol inserted. The entry 24 in the 3™ column of the 2°¢ row is the time at which o} is

W inserted into the port I® of cell 1.




...............

4
: -
9
1 2 3
. 4
o |16 (22| 28 .
o) |12 |18 24 -
vi |14 |23 32
3 vil22 31| 40
: Table 4 :
. 4
!
Tables 5 and 6 give the times and the cells where ¥, meets &/ and ¥, meets &4
- respectively. y
¢ll q’l2 ¢13 }
.: ‘l’ll <all’5’24> <312,3,26> <313,1,28> .:‘
. VP | <35,830> | <ap,6,32> | <ay,4,34> 3
V| <3y;,11,36> | <233,9,38> | <ayy,7,40> :
3 .
L Table 5 ‘
¢, *; ¢;
<8",9,28> <a,2,7,30> <313,5,32>
<2y,,12,34> | <2y,10,36> |  <a44,8,38>
<331,15,40> <332,]3,42> <333,11,44> o
Table 6 ,'.
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The entry in the i** row and j'® column of Table 5 is a 3-tuple <a;;,x,y> where x is
the cell where #; and ¥, meet and y is the time 2t which they meet at x. At the same

time a;; also appears at the port [A of x. Consequently aj; is activated in x at time y.

Similarly the entry in the i** row and j'® column of Table 6 gives the time and cell

wherein aj; gets deactivated.

We will trace the computation of ¢;, as an illustration. The trace is depicted in

Table 7.

t lindex | IA IB
18 15 0
19 14 0
| 20 | 13 0
'_QL 12 0
22 11 0
| 23 10 0
[ 24 | 9 0
25 8 _ 0
26 7 A9 % bm
27 | 6 0
28 5 au‘ b22
| 29 4 331
30 3 2y3* T”
31 2 332
32 1 0
Table 7

Consider any i*® row in Table 7. The 1* column in the i'® row is the time at which
¢, appears at the input port IC of the ceil whose index appears in the 2" column. The

entries in the 3™ and 4*® columns are the elements at the cell's A and IB ports at that

1R

time. For instance, the 9*® row indicates that ¢,, appears at the input port IC of cell 7 at
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-': j
: time 26 and a;; and b,, are the elements at the ports IA and IB respectively of cell 7 at

{ time 26.

o

The “starred” entries in the 3™ column are used to indicate that the corresponding

s
s
o'

entries are active. For justance, a,, is active when it appears at the input port 1A of cell

‘
4

: 7 at time 26. On the other hand ay, is inactive when it appears at the port IA of cell 4 at

AR
PRRTRK]
Y YN AN]

time 29.

[hEN

From Table 7 it ¢in be seen that ¢, gets updated only in cells 7, 5 and 3. In any
= other cell it is rot updated as cither it encounters a 0 or an inactive element of matrix A

at the cell's IA port.

4

- 4. Proof of Correctness

:.. We now establish the correctness of the algorithm. We will only prove this for
y odd n as the proof for even n is similar. Let c;; denote the element O inserted at IC of

cell m at time ty+2+43n(i-1)+2(j-1) in step 3 of the alzorithm.

.l’.) DR

We will say that the elements of the three matrices and the control signals meet at

‘.

a cell whenever they appear at the ceil’'s input ports ia the same cycle. (For instance,

\.: a, and b, meet 2t cell hif a, and b, appear at the input ports IA and IB respectively
f'“.‘. of cell h in the same cycle.)

:. Each cell in the linear array has five [/O ports ( three for inserting and extracting
‘ elements of matrices A, B and C and two for inserting and extracting ®;, ¥, and ¥,, ¥,
' control signals ). In the folloyvipg Lemma we show that these I/O ports are pever “‘over-
-:’:S loaded " by showing that distinctheleinents can never appear simultaneously at the same
{“:' input port of any cell in the linear array.

9

Lemma 4.1: Distinct elements of matrices A, B and C do not simultaneously reach the
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. input ports 1A, IB and IC of any cell in the linear array. Distinct $,, €, control signals
.‘_. do not simultaneously reach the input port I$ of any cell, and distinct ¥,, ¥, control
f‘:.: signals also do not simultaneously reach the input port I¥ of any cell.

4 Proof: We will show that distinct elements of matrix A do not simultaneously reach
\« the input port IA of any cell and the proof will be similar for elements of matrix B and
_ matrix C as well as for the control signals $,, &,, ¥, and ¥,.

'\:.‘:: Let a;; and a,, be two distinct elements that appear simuitaneously at the input
SE port of cell s. The time taken by a; to reach the input port of s is
': [to+2+(n-1)p-r)+0(i+j-2)+(;-1)] + {s}. The expression within | ] is the time at which
'~ a;; is inserted into the array and the expression within { } is the time taken by a;; to
reach s after it is inserted. Similarly, the time taken by a,, to reach s is
to+2+(n-1)Yn-r)+n{p+q-2)+(q-1} +(s]. Equating these two times and simplifying we
Tod

,'._: obtain (i-p+j-q)= jjnjl. Now the left-hand-side is an integer and the right-hand-side is
e

':". a fraction since 0 < [j-q| < (n-1). So for equaliiy to hold j=q and i=p. So a;; and apq
_‘ are not distinct as assumed -- a contradiction. O

e

bt Recall that a cell performs a matrix multiplication step only if th> element at its IA
_'_: port is active. Hence, for any c;; to be correctly updated it must meet an active a;, (V/s
]1<s<n). We next identify the cells in which a, is active.
Lemma 4.2: Let p==n(i-1)+(r+1)(n-s)+1 and q==n(i-1)+(r+1)n-s)+n+2. If a, is active
inacellythenp <y <q.

~

_;f Proof: a, is activated whenever it meets a $, and ¥, control signal simultaneously. Let

o
':lf h be the cell index where a;, meets ¢ and ¥§ simultaneously. Let t(a,), t(®f) and
3

N

A
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(¥ §) denote the times at which a,,, ¢ and ¥ § respectively are inserted into the array.

Let h(a,), h(®) and h(¥§) denote the time taken by a;,, & and ¥§ respectively to

-’ reach h after being inserted into the array. Now a,, &/ and ¥§ meet at h. Hence

-' ) t(a;,)+h(a;,)=t{ ) +h(®)=t(¥ 5)+b(¥ §). From the algorithm we obtain the following:

-}} (1) t{ap)=to+2+(n-1)Xn-r)+n(i+s-2)+(s-1) and h(a;)=h-1.

\J (2) t(®])=ty+2+3(r+1)f-1) and b(®)=2(h-1) (The multiplication factor 2 appears in

A h(<bl') as §, control signals travel at a velocity of -;— a cell per clock cycle).

;

% (3) (¥f)=t;+3n(g-1) and k(¥ F)=m-h (h is subtracted from m in h(¥§) as ¥, control

i signals travel from cell m to cell 1). i
:" Now t(<b,')+h(¢1')==t(‘Pl‘)+h(‘|’1‘) and so from (2) and (3) we can obtain h=n(g- j
4 1)+(c+1)n-f)+1. Also t(a;,)+h(a;,)=t(®/)+h(®/) and so from (1) and (2) we can obtain :
,. (n-1)n-r)+n(i-1)+(n+1)s-1)=3(r+1)f-1)+h-1 which on substituting h==n(g-1)+(r+1)n-

- f)+1 simplifies to n(s-f-g+i)={-s. Since 0<|f-s|<n-1, so for equality to hold f=s and

- g=i. So ¢/ = ¢ and V§ == ¥, and h=p. So a;, only meets ¢ and ¥,. It meets them

:; at cell p. Hence a;, is activated in cell p.

‘\ We can similarly show that a, only meets ¢, and \lhj and it meets them at cell q

and hence a, is deactivated in cell q. Consequently, 3, is active only in a cell y where

p<y<aq d

R LA

3
bbbt TN s i i

L0

4
s

Y0

Having identified the cells in which a, is active, we will now establish that Cii

A d iR A,

always meets an active a;, and b,; (\/s|1 <s<n) in the same cell.

Lemma 4.3 Let p==n(i-1)+(r+1)n-s)+1 and x=p+j. Then, for any i,j,s (1 < i,j,s < n),

l"}“.‘.'.".l.lv" e Iy 'r'h. o g5
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1.  a; b, and c;; will only meet at cell x, and
2. a, is active then.

Proof: Let a, b, and c;; meet at cell h. Let t(a;,), Yb,) and t(c;) denote the time at
which a;, b,; and ¢;; respectively are inserted into the array. Let b(a,), h(b,;) and b(c,)
denote the time taken by a;, b,; and c;; respectively to reach cell h after being inserted
into the array. Equating t(a;,)+bh(a;) to t(b,)+h(b,) we can obtain h=sx==n(i-
1)+(r+1)n-s)+1+j.

Now a;, b, and c;; will pass through every cell indexed from 1 to m. We will first
show that they pass through h by showing that 1 < h <m. The mirimum value of h is
2 which is cbtained when i==j==1 and s==n. Clearly, 2 > 1 and hence h>1. The max-
imum value of h is n°+(n-1)r+1)+! which is obtained when i==j==n and s==1. Clearly

p’>+(n-1)r+1)+1<m and hence h < m.

1. Hence aj;, b;j and c;; meet at cell x. Lastly, cell x is the only cell where they will

meet as c;; travels in a direction opposite to that of a;, and b,;.

2. That a,, is active follows immediately from Lemma 4.2. |
=3 ==t
From Lemma 4.3 we can assert that c;;> Y- a,b,;. To assert that ¢;;= Y’ a,b,; we
=1 8=

must ensure that if c;; does not meet an active a, in a cell then either it encounters an

inactive element of matrix A or the element 0 at the cell's 1A port.
Lemma 4.4: If an active a;, meets ¢,, then us==i.

Proof: Let p==n(i-1)+(r+1)n-s)+1 and q==n(i-1)+(r+1)n-s)+n+2. By Lemma 4.2 a, is

active in any cell y such that p < y < q.
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Let t(a,). t{cg,) respectively denote the times at which o, and c,, are inserted into
the arruy. Let p(a,) and ofa;,) denote the times taken by a;, to reach cell p and cell q
respectively. Let y(c,,) denote the time taken by c., to reach cell y after being inserted
into the array. c,, meets an active a, and hence t{a,)+p(a;) < t(cg )+¥(cey) <
Uay)+ala,).

Let y=p+A. As qp=n+l and p<y<q %0 0 < A < n+l. Now
t(cqv)=t,+2+3a(u-1)+2(v-1) and y(c,,)=m-p-A. Since t(a;)+p(a;) < t(cyy)+¥(cyy) We
can obtain:

A < 3n(u-i)+2V .....(a)

Also as t{c,,)+ylc,,) < t(a;,)+q(a;,) we obtain:

A > 3n(u-i)+2v-0-1 .....(b)

A 2> 0 and so 3n(u-i)>-2v. For u<i this inequality does not hold as the minimum value

of -2v is -2n and tke maximum value of 3n(u-i) is -3n when u-i=-1.

A < n+1 and so 3n(u-i)+2v-n-1 < n+1 which reduces to 3n(u-i) < 2(n+1-v). For
u>i this inequality does not hold as the maximum value of 2(z+1-v) is 20 when v=1.

The minimum value of 3u(u-i) is 3n when u>i and u-i==1.

From (¢) and (d), u==i. 1

Lemma 4.5: In any cell y in the linear array and for acy i,j (1 < i,j < n) ¢;; always

encounters an element of matrix A or a 0 at the IA port of cell y.

Proof: Let t(c,)) denote the time when c;; is inserted into the array and y{c;;) denote the

LNELR ol o

Ce 8NN s_‘.\..\'.\:,\'_-.:_-.:,x’ N Y °-'~.‘ \;;'.‘ ) \‘_-.‘-.',-.',\" -~ \‘,\'-.'_-3_\‘ S A T ST N
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;'{.: time taken to reach cell y after insertion. Now ¢(c;)=ty+2+3n(i-1)+2(j-1) and

y(c,;)=m-y. The element encountered by c;; at the IA port of cell y must have been

’ inserted into the array at cell 1 at time z==t{c;;)+y(cj;}}-y+1. Recall from step 8 of the
3 algorithm that either the element 0 or an element of matrix A is inserted into the array
- between cycles ty{(n-1Xn+1)}-n°-1 and ty+50°-2n+1. If we show that
. to(n-1)(r+1)-0°-1 < z < ty+50°-2n+1 then clearly the element inserted into the array
o at the IA port of cell 1 is either the element O or the element of matrix A.

_ Now z==t(c;;)+y(c;;}y+1

f- mst+2+30(i-1)4+2(j-1)+0°+2+(n-1)r+1)-2y+1

It can be easily seen from the expression above that z is minimura when i and j are
'.; minimum and y is maximum. i==]1 and j=1 are the minimum values for i and j and
N y=m=(n-1)Yr+1)+0’ is the maximum value of y. Similarly, z is maximum when i=n,

.}: j==n and y=1. Let z,,, and zy;, denote the maximum and minimum z respectively. It
can be easily shown that z.;, > to-(n-1)Yr+1)-n%-1 and z,,, < ty+50°-2n+1. 1
oA We can now assert that c;; is correctly computed when it exits the array.

:

-'_J Theorem 4.1: For any i,j (1 < i,j £ n), the value of ¢;; is .E:.ai,b,j when it exits the
) e=1

7 array.

; Proof: By Lemma 4.5 c;; will either meet an element of matrix A or the element 0 at
- any cell. '
Q) 1. By Lemma 4.3 it will meet a;, and b,; in the same cell.

2. By Lemma 4.4 if it meets an element a,, of matrix A and upfi then a,, is inactive.
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From (1) and (2) the Theorem follows. C

5. Proof of Optimality

We will now establish that the number of cells used by the modular linear-array
algorithm is asymptotically optimal. We establish this result under the following assump-

tions:

1. Any special-purpose machine (like a linear array) that multiplies matrices A and B
must compute agby; ( Vi, Vi and Yk [1<i,j,k<n).

2.  The special-purpose machine has a constant number of 1/O ports.

3. The elements of the matrices A, B and C are inserted into the special-purpose

marhine only opce through the input ports.

Under these assumptions we will establish that {}(n°) 2 is a lower bound on the
storage that is required by any special-purpose machine that multiplies two nXn
matrices. We obtain this bound by formulating the computation of matrix multiplication

as a game played with tokens on an undirected graph constructed as follows:
Let Gy=(V, E;), k=1,..,n where
Viy={fy hy;|i=1,.n and j=1,..,n} and
Ey={<fy by;> | i=1,.,n and j=I,..,n}
The rules of the game are as follows:
1. A token is placed on fy (by;) when a;, (by;) is inserted into the machine.

2. Updating c,; ( by adding ayby; to ¢ for some k) results in removing the edge

<fi, by;j> from G,.

${n) == }(n?) if there exista a positive constaat ¢ for which {n)> en?

S A s A A A S S G e
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- 3.  An edge is removable only if there are tokens at both end vertices. ‘

4. A token from a vertex is removable only if all the edges incident on the vertex are
removable. When a token from a vertex is removed then all the incident edges on
the vertex are deleted. (The token will eventually leave the machine and will never

reenter.)

We will assume that each token occupies unit storage (O(1)). We also assume that a
partially updated c;; also occupies unit storage. (At any instant of time c;; is partially
updated if there exists some k (1<k<n) such that ayb,; either has not been computed

and/or added to c;; by that time instant .)

Let x; be the earliest time at which the first token in G; is removable and let y, be
the earliest time at which all the tokens in Gy are removable. Since only a constant
number of tokens enter the machine at any time, by choosing n sufficiently large, we can
ensure that 'k (1<k<n) x;<yy. Vk (1<k<n), let I,=[x, y,] denote the time interval

between and including x, and y,.
Lemma 5.1: At any time t such that x, <t<y,, there are at least n tokens in G,.

Proof: Without any loss of generality, let the first (or one of the first if there are more

than one) token(s) that can be removed from Gy be the one on vertex fyy. At t, = x,,

LSRN

then, there must be tokens on all hy; (1<j<n). We claim that no token on any hy;

LA
",

;.l::: will be removable at any t (x, <t<y;).
Yo
s Assume this is not the case, and at t <y, let hy; be the first vertex (or one of the

first vertices) from which a token is removable. This implies that there must be tokens

a¥s"a A a Al

POEr:

e

on all vertices f;; that still have incident edges. This means that all the edges still

e

remaining in Gy are removable, and consequently all the remaining tokens in G, are
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"'; removable at time t. But then t=xyy - a contradiction. Hence no token on any by, is
{ removable at any time t (x, <t<y,). Each h;; has a token and hence the Lemma.
o
- O
o
Lemma 5.2: Let m<n. For any i, if t>y; and G; has m tokens then at least 22— edges
3 2
'\ must have been deleted from G;.
h]
n.:‘
: Proof: There are m tokens in G;. Since t>y;, the absence of a token on a vertex means
S
L ey’ .
5‘\'2 that all the n edges incident on the vertex have been deleted. (At t==y;, all edges in G;
<
S
o are removable). The number of absent tokens==2n-m which is greater than n as m<n.
Now one edge is in common with at most two vertices. Thus the 2n-m absent tokens
:~ . n’
e result in at least T deleted edges. d
‘.4
::: Let us impose an ordering on the sets Iy such that x; <x; <..<x; and let T =
A~
- {l | vu<x;} and A={ly | B, >x.}.
" Theorem §.1: Any matrix-multiplication machine requires f3(n?) storage.
&
- Proof: Since [I'|+]|A|=n, either [['| > % or |A| 2> %.
I~
18
4.: Case 1. |A| 2 % (see Figure 5.1)
2
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Figure 5.1

At t==x;_ all the intervals in A satisfy Lemma 5.1. Hence at t=x;, there are at least

n(%) tokens in the machine. So the storage required is 2(n?).

Case 2 || 2 % (see Figure 5.2)

'
Xy Y '
'
xzﬁ Y) \
[}
Xy* Y3 !
y
X4 .Y4
xin :—-————. Y‘n
_’timo
Figure 5-2

At t=x; , either all Gy, such that [,€A, have n tokens on them, or at least one of them
has less than n tokens. If every G, has n tokens then the storage required is again

f)(n®). If any ome, say G,, has less then n tokens then by Lemma 5.2 G, must have

Bl ot & &

2
released at least nT edges. Now each releassd edge corresponds to a partially updated

c;j- None of the c;;’s could have left the machine as all of them are finally updated only

L 2
N at t2x; . Thus at any time t (yy St<x;) there are at least %- partially updated c;;'s in

[N ]

the machine. The case y,=x; is covered by assumption 2 which precludes the possibil-
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~ ity of all these c;'s being instantaneously updated and leaving the machine. So the
>
storage required for the partially updated c;;'s must be Q(n%). O
é{ Theorem 5.2: O(n?) cells used by the modular linear-array algorithm is optimal.
N Proof: From Theorem 5.1 it follows that the modular linear-array algorithm requires K
N f)(n®) storage. Now each cell in the linear array has constant storage and hence the p
N /
N Theorem. .|
S 3
N
:'; Conclusion
It We bhave described a novel linear-array matrix multiplication algorithm that uses
.. an asymptotically optimal number of cells. The cells used in the array are simple requir-
\ ing a constant amount of local storage that is independent of the sizes of the matrices
\ being multiplied. The cells can be built using off-the-shelf components. The array can be ’
"
2 modularly expanded to accomodate arbitrary matrix sizes by adding more of these sim-
\ ple cells.
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